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Decision trees 

A decision tree is a predictive model which maps observations about an item to conclusions about 

the item's target value. Another name for such tree models is classification trees. In these tree 

structures, leaves represent classifications and branches represent conjunctions of attribute-values 

that lead to those classifications. In decision trees, each interior node corresponds to an attribute; 

an arc to a child represents a possible value of that attribute. A leaf represents a possible value of 

target variable given the values of the variables represented by the path from the root. 

 

A tree can be "learned" by splitting the source set into subsets based on an attribute value test. This 

process is repeated on each derived subset in a recursive manner. The recursion is completed when 

splitting is either non-feasible, or a singular classification can be applied to each element of the 

derived subset. In advanced algorithms like C4.5 (J48), other stopping criteria are also used. 

Decision tree induction - Algorithm ID3 

Given: training set S 

    1.   Compute the entropy E(S) of the set S 

    2.   IF E(S) = 0 

    3.      The current set is “clean” and therefore a leaf in our tree 

    4.   IF E(S) > 0 

    5.      Compute the information gain of each attribute Gain(S, A) 

    6.      The attribute A with the highest information gain becomes the root 

    7.      Divide the set S into subsets Si according to the values of A 

    8.      Repeat steps 1-7 on each Si 

 

The information gain of an attribute Gain(S ,A) is computed as follows: 
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The entropy of a set E(S) is computed as follows, where pc are probabilities of each class: 
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Exercise 
Given: Attribute-value data with nominal target variable Lenses. 

Induce a decision tree and estimate its performance on new data. 

 

The data: 

 
 

We split the data into two parts: one for training and one for testing. 
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We induce a decision tree on the training set S according to the algorithm ID3. 

Compute the entropy E(S) of the set S: 

 

There are 17 examples in our training set. 6 of 

them have value Lenses=YES and 11 of them 

have the value Lenses=NO.  

 

E(S) = E(6/17, 11/17) = 0.94 

 

Since the entropy E(S) is not zero, we compute the information gain of each attribute: Gain(S, A). 

 

Information gain of the attribute Age on set S: 

 

 

 
The attribute Age splits the set S into three subsets: 

Age=young, Age=pre-presbyopic and 

Age=presbyopic with 7, 3 and 7 instances 

respectively.  

In the subset Age = young, there are 3 items with 

Lenses=YES and 4 with Lenses=NO.  

E(Age=young) = E(3/7, 4/7) = 0.99. 

Similar for the other two sets: 

E(Age=pre-presbyopic) = E(1/3, 2/3) = 0.92 

E(Age=presbyopic) = E(2/7, 5/7) = 0.86 

Gain (S,Age) =  

E(S) – 7/17 E(Age= young) – 3/17 E(Age=pre-presbyopic) – 7/17 E(Age=presbyopic) = 

= 0.94 – 7/17 * 0.99 – 3/17 *0.92 – 7/17 *0.86 = 0.02 
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Information gain of the attribute Prescription on set S: 

 

 
 

E(Prescription=hypermetrope) =  

    = E(3/7, 4/7) = 0.99 

 

E(Prescription=myope) =  

     = E(3/10, 7/10) = 0.88 

 

Gain (S, Prescription) =  

= E(S) –  

– 7/17 E(Prescription=hypermetrope)  

– 10/17 E(Prescription=myope) =  

= 0.94 – 7/17* 0.99 – 10/17 * 0.88 = 0.02 

 

 

 

Information gain of the attribute Astigmatic on set S: 

 

 
 

E(Astigmatic=no) = E(3/9, 6/9) = 0.92 

 

E(Astigmatic =yes) =  E(3/8, 5/8) = 0.95 

 

Gain (S, Astigmatic) =  

= E(S) –  

– 9/17 E(Astigmatic=no)  

– 8/17 E(Astigmatic=yes) =  

= 0.94 – 9/17* 0.92 – 8/17 * 0.95 = 0.006 
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Information gain of the attribute Tear_Rate on set S: 

 

 
 

E(Tear_Rate=normal) = E(6/7, 1/7) = 0.59 

 

E(Tear_Rate=reduced) = E(0/10, 10/10) = 0 

 

Gain (S, Tear_Rate) =  

= E(S) –  

– 7/17 E(Tear_Rate=normal)  

– 10/17 E(Tear_Rate=reduced) =  

= 0.94 – 7/17* 0.59 – 10/17 * 0 = 0.70 

 

 

The attribute with the highest information gain is Tear_Rate with information gain of 0.70. This 

attribute is chosen to become the root of our tree. We recursively continue to build the tree on 

subsets of set S according to values of the attribute Tear_Rate. 

 

 

On the one hand, the entropy of the subset with Tear_Rate=normal is 

not zero, therefore we continue with the built. On the other hand, the 

entropy of the set Tear_Rate=reduced is zero, which means that the 

algorithm has reached the end and this node is a leaf of the tree. It 

classifies into class Lenses=NO. 

 

 

 

Information gain of the attribute Age on set Tear_Rate=normal: 

  
 
E(Age=young | Tear_Rate=normal) = E(3/3, 0/3) = 0 

E(Age=pre-presbyopic | Tear_Rate=normal) = E(1/1, 0/1) = 0 

E(Age=presbyopic | Tear_Rate=normal) = E(2/3, 1/3) = 0.92 

 

Gain (S Tear_Rate=normal, Age) =  

E(S Tear_Rate=normal) – 3/7 E(Age=young | Tear_Rate=normal)  

– 1/7 E(Age=pre-presbyopic | Tear_Rate=normal) 

– 3/7 E(Age=presbyopic | Tear_Rate=normal) = 

= 0.59 – 3/7 * 0 - 1/7 * 0 - 3/7 *0.92 = 0.20 
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Information gain of the attribute Prescription on set Tear_Rate=normal: 

  
 
E(Prescription=myope | Tear_Rate=normal) = E(3/4, 1/4) = 0.81 

E(Prescription=hypermetropy | Tear_Rate=normal) = E(3/3, 0/3) = 0 

 

Gain (S Tear_Rate=normal, Prescription) =  

E(S Tear_Rate=normal) – 4/7 E(Prescription=myope | Tear_Rate=normal)  

– 3/7 E(Prescription=hypermetropy | Tear_Rate=normal) = 

= 0.59 – 4/7 * 0.81 - 3/7 * 0 = 0.13 

 

Information gain of the attribute Astigmatic on set Tear_Rate=normal: 

  
 

E(Astigmatic=no | Tear_Rate=normal) = E(3/4, 1/4) = 0.81 

E(Astigmatic=yes | Tear_Rate=normal) = E(3/3, 0/3) = 0 

 

Gain (S Tear_Rate=normal, Astigmatic) =  

E(S Tear_Rate=normal) – 4/7 E(Astigmatic=no | Tear_Rate=normal)  

– 3/7 E(Astigmatic=yes | Tear_Rate=normal) = 

= 0.59 – 4/7 * 0.81 - 3/7 * 0 = 0.13 

 

 

The attribute with the highest information gain on set Tear_Rate=normal is Age with information 

gain of 0.20. This attribute is chosen to become the next node of our tree. We recursively continue 

to build the tree on subsets of this set according to values of the attribute Age. 

 

 

On the one hand, the entropies of the subsets 

with Age=pre-presbyopic and Age=young  

are zero, therefore we reached the end of the 

tree. On the other hand, the entropy of the set 

Age=presbyopic is not zero, which means 

that the algorithm continues with the built. 
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Information gain of the attribute Prescription on set Tear_Rate=normal&Age=presbyopic: 

 

 
 
E(Prescription=myope | Tear_Rate=normal&Age=presbyopic) = E(1/2, 1/2) = 1 

E(Prescription=hypermetropy | Tear_Rate=normal&Age=presbyopic) = E(1/1, 0/1) = 0 

 

Gain (S Tear_Rate=normal&Age=presbyopic, Prescription) =  

E(S Tear_Rate=normal&Age=presbyopic)  

– 2/3 E(Prescription=myope | Tear_Rate=normal&Age=presbyopic) 

– 1/3 E(Prescription=hypermetropy | Tear_Rate=normal&Age=presbyopic) = 

= 0.92 – 2/3 *1 – 1/3 * 0 = 0.25 

 

Information gain of the attribute Astigmatic on set Tear_Rate=normal&Age=presbyopic: 

 

 
 
E(Astigmatic=no | Tear_Rate=normal&Age=presbyopic) = E(1/2, 1/2) = 1 

E(Astigmatic=yes | Tear_Rate=normal&Age=presbyopic) = E(1/1, 0/1) = 0 

 

Gain (S Tear_Rate=normal&Age=presbyopic, Prescription) =  

E(S Tear_Rate=normal&Age=presbyopic)  

– 2/3 E(Astigmatic=no | Tear_Rate=normal&Age=presbyopic)  

– 1/3 E(Astigmatic=yes | Tear_Rate=normal&Age=presbyopic)= 

= 0.92 – 2/3 *1 – 1/3 * 0 = 0.25 

 

Both attributes Prescription and Astigmatic have the same information gain of 0.25. The ID3 

algorithm would choose one of them for the next node (implementations usually take the first one). 

If we choose the attribute Prescription, the only remaining attribute is Astigmatic, which finally 

splits the dataset into “clean” subsets with entropy zero. 
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If we choose the attribute Astigmatic, the only remaining attribute is Prescription, which also splits 

the dataset into “clean” subsets with entropy zero. 

 
 

We use the former tree and test its performance on the testing set. 

 
 

Confusion matrix predicted 

    Lenses=YES Lenses=NO 

a
c
tu

a
l 

Lenses=YES TP =3 FN=0 

Lenses=NO FP=2 TN=2 
 

Classification accuracy is 

CA = (TP + TN)/(TP+TN+FP+FN) 

       = 5 / 7  

       = 0.71 

 
Petra Kralj Novak 

Petra.Kralj.Novak@ijs.si 

http://kt.ijs.si/petra_kralj/dmkd.html 

 

mailto:Petra.Kralj.Novak@ijs.si
http://kt.ijs.si/petra_kralj/dmkd.html

